quick overview! $P \Rightarrow Q \quad \neg P \Rightarrow \neg Q \quad Q \Rightarrow P \quad \neg Q \Rightarrow \neg P$
statement
inverse
converse
contrapositive

- N includes O in this class. - just knowing $P \Rightarrow Q$ says nothing about inverse t converse.
Implications - a promise for Q if P. if P didn't happen, promise is still rept \because $P|Q| P \Rightarrow Q \quad$ if P true, Q true \equiv if Q false, P false. \sim contrapositive $\begin{array}{lll}T & T & T \\ T & F & F\end{array} \Longleftrightarrow$ need to prove both $P \Rightarrow Q$ and $Q \Rightarrow P$,
for all
Quantifiers $\forall=$ "big and"; $\exists=$ "big or"
Negation $\neg\left(\forall_{2} P(x)\right) \equiv \exists x \neg(P(x)) \overbrace{\text { " if its not the that all } x \text { are such, }}^{\text {there must be sone } x \text {, }}$ $\neg(E x P(x))=\forall x \neg(P(x))$ snit such"
negate from outside to in (use flipped quantifiers \& DeMorgans)
key takeaways and observations
- $x, y \in \mathbb{Z}: x \pm y \in \mathbb{Z}, x \cdot y \in \mathbb{Z}$, not closed under division
- when working with quantifiers / negating, converting implications to $\neg P \vee Q$ might be easier - thy it!
- try approaches other than troth table when quantifiers (\forall, \exists) involved
- think of 2D space when propositions are of form $Q(x, y)$,etc.
- quantifier order matters if they are different
thanks for coming! please fill out the check-in today and feedback form when you want to.
- check-in: https://forms.gle/fKotx2ad4YZLmdb17
- feedback: https://tinyurl.com/aishani-sp21-fb

