CS recap • will usually be inducting on N in this class () 🗢 🗢 🗢 Jeneral Induction Process () base case -> P(BC) pushing over first domino (2) inductive hypothesis -> P(K), K = BC the KM domino has fallen (3) inductive step -> P(k) => P(k+1) km domino falling makes k+1m fall > try to seek out vorking @ perms Strengthening Hypothesis (= Strong Enduction!) give proof more structure by proving pattern that is more specific than original daim. False Proofs ensure that no part of your inductive step requires k to be anything Specific (other than higher than the base case) • Same Color Morses provf : assumes K≥3, but BC = 1

recap

Tecap	
Weak Induction vs. Strong M Induction	
Weak	
() base case -> P(BC) () have case	$e \rightarrow P(Bc)$
(2) inductive hypothesis -> P(K), K = BC (2) inductive b	nypothesis -> P(i), BC <i <="" k<="" td=""></i>
(3) inductive step -> P(k) => P(k+1) (3) inductive s	step $\rightarrow \Lambda^{k} P(i) \Longrightarrow P(k+1)$ i=BC
	i= BC
Now, suppose we have some	
$P'(k) := \bigwedge^{k} P(i).$ $P'(k+1) = \bigwedge^{k} P(i) = P'(k) \wedge P(k+1)$ $i = Bc$ $i = Bc$ $i = Bc$ $i = Bc$	
I = BC	of technically in Scope but
$P'(k+1) = \Lambda P(i) = P(k) \Lambda P(k+1)$. way of knowing that strong
$ \pi r \cdot \nabla l (r) \rangle = \mathcal{P}'(r_1) \rangle$	duction to prove P is just
WTS: P'(k) => P'(k+1) which is really just	verte induction to prove P'! o'
$P'(k) \vee P'(k+1)$ Showing $P'(k) \Rightarrow P(k+1)$	
$7P'(k) \vee (P'(k) \wedge P(k+1))$	
TRUE (7P'(k) v P'(k)) A (7P'(k) v P(k+1)	

CS

، ک

key takeaways

- · Strong induction is just weak induction, "reformatted"
- inductive step : ∀n ≥ BC, P(n) => P(n+1)
- Fibonacci Problems: when in doubt, try to leverage -F(k) = F(k-1) + F(k-2) \rightarrow usually need two base cases (why?) $F(k) \ge F(k-1)$
- you're just showing P(k+1) under the assumption that P(k) is the -> can often write out expression for P(k+1) and group P(k) together (common in algebraic proofs)

thanks for coming! help me help you $\rightarrow \frac{https://www.tinyurl.com/aishani-sp21-fb}{https://www.tinyurl.com/aishani-sp21-fb}$