recap Optimality
Intuition:
"lowering st andards only as much co as then need to"
Proof : P\&R is job optimal, assume some J with optimal C, J^{\prime} w/ optimal C^{\prime}
Suppose NOT job-optimal matching thru PQR so in matching T, J is paired $w /$

- we know J : ... C>C*... (preference). non optimal C*
- on day K, J got rejected by C. Suppose for simplicity, K is first day where a job gets rejected by its optimal candidate.
- on day k, c rejected J for $J^{\prime} J^{\prime}$ has not been rejected by its optimal cana. yet, so we know $J^{\prime}: \ldots C>$ optimal and $\left(C^{*}\right) \ldots$ b|c J^{\prime} proposed to C today.
- by definition of optimality, there is a matching S where $(J, C),\left(J^{\prime}, C_{2}\right)$ where C_{2} is just some other candidate that is a valid match for J '.
- on day k of making matching T : J, has not been rejected by C_{2} (b/c C_{2} is valid, so at least as bad as J 's optimal (')
- we know $\sigma^{\prime} \ldots c>C_{2}$
S is just any other stable matching
- C and J^{\prime} are rogue couple in matching $S=$ but we assumed R is stable
recap
$G=(V, E)$ mostly work with undirected graphs in 70.
Definitions
- vertices u, v adjacent / neighbors = share edge
- connected graph $=\exists$ path between any 2 vertices
- path \subseteq walk (path cannot repeat vertices/edges, walk can)
tour \subseteq walk (tour heeds to start γ end in some place)
cycle \leq tour (cycle cannot repeat vertices except the start/end)
- planar. can be drawn on paper wo crossing (ok to curve edges) non planar \Leftrightarrow (contains k_{5} or $k_{3,3}$)
- bipartite. Vertices can be split into 2 disjoint sets, edges go between sets only.
- Euler's formula. $v+f=e+2$ (infinite face counts as 1)
- Coloring : soon!
recap Graph Induction "shrink down, grow back"
(1) base case (often $v=1$ or $c=1$)
(2) assume the for size n graph
(3) start with size $n+1$ graph, remove vertex/edge, apply (2), then show everything holds when you add the vertex/edge back in.

What is wrong with the following "proof"?
False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is connected.
Proof: We use induction on the number of vertices $n \geq 1$.
Base case: There is only one graph with a single vertex and it has degree 0 . Therefore, the base case is vacuously true, since the if-part is false.
Inductive hypothesis: Assume the claim is true for some $n \geq 1$.
Inductive step: We prove the claim is also true for $n+1$. Consider an undirected graph on n vertices in which every vertex has degree at least 1 . By the inductive hypothesis, this graph is connected. Now add one more vertex x to obtain a graph on $(n+1)$ vertices, as shown below.

All that remains is to check that there is a path from x to every other vertex z. Since x has degree at least 1 , there is an edge from x to some other vertex; call it y. Thus, we can obtain a path from x to z by adjoining the edge $\{x, y\}$ to the path from y to z. This proves the claim for $n+1$.

* assumes that all $n+1$-vtx graphs with property M can be built from a $n-v t x$ graph with property M.

