recap
Polynomials：$p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x^{1}+a_{0} x^{0}<$ constant $^{d+1}$ terms
Properties：（1）nonzen polynomial of degree d has at most d cots
（2）a set of $d+1$ distinct coordinates $\left(x_{i}, y_{i}\right)$ where all x_{i} are distinct uniquely characterizes a polynomial of degree（at most）d
$G F(p)$ ：all values are $\{0 \ldots p-1\}$
finite field $x^{p-1} \equiv 1 G F(p) \rightarrow$ in $G F(5), x^{7} \equiv x^{3}$
Secret Shaving：need $d+1$ people to unlock a secret
－hide secret at $x=0$ of a degree d polynomial
－give individual people one point each
－secret will only be reveded if a del people agree to shave their point
recap Lagrange Interpolation
goal: find degree d polynomial given $d+1(x, y)$ pairs.
$\left(x_{1}, y_{1}\right)$
$\left(x_{2}, y_{2}\right)$ find $\Delta_{i}(x)$ st $\Delta_{i}\left(x_{i}\right)=1, \Delta_{i}$ (anything else) $=0$ C basis polynomial
(1) Start with the zeros. Want x_{2} and x_{3} to be zeros of Δ_{i}

$$
\Delta_{1}(x)=c_{1}\left(x-x_{2}\right)\left(x-x_{3}\right)
$$

(2) find c_{1} st $\Delta_{1}\left(x_{1}\right)=1 \longrightarrow$ if in $\mathbb{R}: c_{1}=\frac{1}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}$
find Δ_{2}, Δ_{3} same way.
if $\cap G F(p): c_{1}=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)^{-1}$
$\bmod p$

$$
p(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+y_{3} \Delta_{3}(x)
$$

things to remember

- an odd degree polynomial must have at least I root
- fix the x values when looking @ \# of possible points for the polynomial.
- secret at $p(0)$. make sure not to give out $p(0)$ to anyone when distributing points!

