recap we're sending a message as points on a polgnonvial.
70698170
what could go urong?
(1) erasure errors (up to k erasures) we need at least n points to decode $P(x)$
$\begin{array}{llllll}7 & ? & 6 & 9 & ? & 1\end{array}$ and get message back
send $n+k$ points so for $e \leq k$ erasures,

$$
n+k-e \geq n \checkmark
$$

Bob: just interpolate with the points that come thru.
correct!
(2) general errors (up to k comptions) we need at least $n \Lambda$ points to decode $P(x)$

7	5	6	6	8	1
1	2	3	4	5	6

if Bob just interpolated with all the points he got, he would get a compted pol. b/c
how do we deal with this? he doesn't tenow which points are bad.
recap Berlekamp-Wech get back original pol. AND where the errors are!
work in mod q (q large enough st. all chamateres you want to encode are unigne)
Message: 2136 Sender will find $P(x):$ Recipient gets all 6
we know channel has that goes thru $(1,2),(2,1)$, packers but up to 1 is I compton.
$(3,3)$, and $(4,6)$ and sends $P(1) \cdots P(6)$ thru
the channel $(6=4+2(1)):(n+k)$ points are correct $\therefore P(x)$ is still deg 3
Error Locator Polynomial: $E(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \cdots\left(x-e_{k}\right) \leftarrow$ deg k polynomial $e_{i}=$ index of error.
Consider the expression $P(i) E(i)=r_{i} E(i)$, where r_{i} is the received val.
\longrightarrow if $P(i)=r_{i}$ so no comption Q index i
this is the bic same terms on both sides
\longrightarrow if $P(i) \neq r_{i}$ so index i was corrupted + there's error there $E(i)=0$ on both sides, $0=0$.
Idea! Set up system of $n+2 k$ equations like above and some.
recap What are we sowing for? coefficients of $Q(x)$ and $E(x)$ for an n-length message we wanna send...

Write $E+Q$ generally: $Q(x)=a_{k+n-1} x^{k+n-1}+a_{k+n} x^{k+n}+\ldots+a_{1} x+a_{0}$

$$
E(x)=1 x^{k}+b_{k-1} x^{k-1}+\ldots b_{1} x+b_{0}
$$

Set up $Q(x)=E(x)$, for $1 \leq x \leq n+2 k$. After finding $Q+E$,

$$
P(x)=Q(x) / E(x)
$$

things to remember

- reason through why we need $n+2 k$ points $\frac{\text { Pohmamial }}{P(x)} \frac{D_{\text {equea }}}{n-1} \frac{\text { Vnkefown }_{\text {Cofficious }}^{n}}{n}$
- if you get multiple sol'ns for $Q(x)$ and $E(x)$, dividing the respective ones should Still give the same $P(n)$
- erasure errs - simplest, just send more points
- deg of $P(x)$ is len(original_message) - 1
- the hypothetical polynomial that you get by interpolating over the received points in case of general errors is not relevant to us (the comet points will give us a bad polynomial so we do not want to consider it in any way) WE SOLUE FOR EVERYTHING wITH BZRLEKAMP-wELCH.]

