recap
functions
$f: X \rightarrow Y$ maps each $x \in X$ to some $y \in Y$ injective at most one x mapped to each y \longrightarrow aka one-to-one, each x has unique image surjective at least one x mapped to each y \rightarrow aka onto, each y has a pre-image bijection ${ }^{\text {TM }}$ exactly one x mapped to each y $\longrightarrow f$ is bijection $\Leftrightarrow f$ has inverse function
countable: be able to inject into naturals.
bijections are injective and surjective. to prove $|X|=|Y|$ can show a bijection between them.

Proving 1:1 and onto for functions with Sone formula -
(1) one-to-one: start with $f(x)=f\left(x^{\prime}\right)$ and show $x=x^{\prime}$
(2) onto: solve for x in terms of $f(x)$
e: \mathbb{N} hand to count, so we compare to a set we know is countably infinite: N WTS bijection from naturals \rightarrow [whatever we are trying to prove is countably inf]
recap Countably Infinite Uncountady Infinite

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}$
- union of countably many countable sets
- all finite-length bitstrings
counting sets of functions: really depends on indindual problem but remember that for all $f: X \rightarrow Y$, each f is uniquely determined by ordered set of y vals that fixed x vals map to.
- $P(N)$ (power set of N)
- infinite length bitstrings
- \mathbb{R} (reals)
- $(0,1)$
if $|A| \leq|B|$ and B is countable, so is A. if $|A| \geqslant|B|$ and B is uncount able, so is A.
if $|A|=|B|$ either they're both countable or both uncountable.
come up with way a to enumerate them Dis 6 B q 2B establish bijection to N
\qquad injection from $S \rightarrow \mathbb{N}$ and from $N \rightarrow S$ S countable? it without skipping Stuff?
establish bijection to uncountable set maybe uncountable
$\xrightarrow{\square}$ to uncountable set

