recap boal : determine	if program P had	ts on input re	
() construct a program	p determine this.		Alishani. 200
		3 analyze Turing (Thrin	27)
def Test Halt (P, x):			
if P halts on x		if T(T) halted, ne	Jeongue
return the		it went into case 3	
if \$ hoops forever or	n 24	but the conditional f	for case 2
return false		is Thring halting on	input
		Turing.	
@ now construct another	Y DYDer ram		
def Turing (P):		if T(T) looped, we	know
() if Test-Haut (P,P) =	true	it went to case ()	
		but being in case ()	means
loop forever	switching		
2 else	the ontomes"	Turing (Thring) halte	
2 else halt		So Test Halt cannot	UXIST.
programs are strings so can also be inputs.	they		

recap

Easier Halting Problem? def Test EZ Halt (P): if P halts on 0: return true

if P loops on 0: return false

We claim Test EZ Hall Norks for any program? let's see if it can exist. well then, we could just solve the thatting Problem.

def TestHalt (P, n) : def P' (y) :

P(x) return

return Test EZ Haut (P')

Munning Test EZ Halt will also check for us if PG2 halted

or not.

fulling to

veduce

Harting

Problem

to Hant

We know this is not possible, So Test EZ Halt cannot exist either.

