recap
sample space set of possible outcomes. $\omega \in \Omega$ ($\omega=$ one outcome Generally two ways to calculate probability:
(1) counting if every $w \in \Omega$ is equally likely!!

$$
P[A]=\frac{|A|}{|\Omega|} \text { so just count numerator }
$$

(2) treat an event as a series of smaller events that need to happen
lot of the time, it won't matter if you consider order to matter or not, but be consistent in both halves of fraction.
Flip a fair win 5 times, find \mathbb{P} [exactly 4 heads] $\rightarrow \frac{\binom{5}{4} \leftarrow \text { pick locations for }}{2^{5} K}$ all possibilities or $\binom{5}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{\prime}$ by method (2)
ensure that the 4 locations
Flip a coin that comes up as $H 60 \%$ of the $\rightarrow\binom{5}{4}\left(\frac{3}{5}\right)^{4}\left(\frac{2}{5}\right)^{1}$ for H actually and up H time, 5 times. find $\mathbb{P}[$ exactly 4 heads] ensure that the 1 location for T actually ends up T

