recap conditional probability = shrinking our sample space

$P[A \mid B]=$ "how much of B (given) also lies in A ".

$$
P[A \mid B] \cdot P[B]=P[A \cap B]
$$

bayes' mule

$$
P[A \mid B]=\frac{P[B \mid A] P[A]}{P[B]_{q}}
$$

don't forget to use total prob rite in denominator
total probability mile

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]}
$$

$$
\begin{aligned}
& P[A]=\sum_{n} P\left[A \cap B_{n}\right] \\
& P[A]=\sum_{n} P\left[A \mid B_{n}\right] \cdot P\left[B_{n}\right]
\end{aligned}
$$

"adding up all the subspaces of the sample space"
recap independence intuitively, knowing B happened did not $P[A \mid B]=P[A]$ give us any info about how likely A is.

$$
P[A \cap B]=P[A] \cdot P[B]
$$

* disjoint events are usually not independent.
events $A_{1}, A_{2} \ldots A_{n}$ are mutually modependent if for all possible subsets of this set of events, $P\left[A_{1} \cap \ldots \cap A_{k}\right]=P\left[A_{1}\right] \cdot P\left[A_{2}\right] \ldots P\left[A_{k}\right]$ pairnise independent if above is true for all subsets of size 2 .
mutually independent \Rightarrow pairwise independent (but not other way around) intersection of events

$$
\begin{aligned}
& P[A \cap B]=P[A] \cdot P[B \mid A] \\
& P[A \cap B \cap C]=P[A] \cdot P[B \mid A] \cdot P[C \mid A \cap B]
\end{aligned}
$$ union of events

$$
\begin{aligned}
P[A \cup B \cup C] & =P[A]+P[B]+P[C] \\
& -P[A \cap B]-P[B \cap C]-P[A \cap C] \\
& +P[A \cap B \cap C]
\end{aligned}
$$

union bound $P\left[\bigcup_{i=1}^{n} A_{i}\right] \leq \sum_{i=1}^{n} P\left[A_{i}\right]$ exactly equal if all events are disjoint

