recap Expectation	Important Facts
$E[X] = \sum_{i=1}^{n} a_i P[X=a]$	$\checkmark E[X+Y] = E[X] + E[Y]$
aest	✓ E[cx] = cE[x]
How to use lineanity of	X E[XY] = E[X] E[Y]] these are NOT X E[X] = E[X] E[Y]] these are NOT always true.
Expectation	$\times E[\overline{X}] = E[X]$
O good: find E[X]	"Sums, differences, and constant
2 figure our now X can	multiplics of KVS
be split up into X, X2 Xn	
st $X = X_1 + X_2 + \dots + X_n$	then,
-Xi should be indicator vars (E	Semonlli) (3) find E[X1]
- do not need to be independent	(use linearity of
- consider "subcases"	expectation

Remember this problem? recap

3 How Many Queens?

You shuffle a standard 52-card deck, before drawing the first three cards from the top of the pile. Let X denote the number of queens you draw.

- (a) What is $\mathbb{P}(X=0)$, $\mathbb{P}(X=1)$, $\mathbb{P}(X=2)$ and $\mathbb{P}(X=3)$?
- (b) What do your answers you computed in part a add up to?
- (c) Compute $\mathbb{E}(X)$ from the definition of expectation. Incarry of CX pectationTM
- (d) Let X_i be an indicator random variable that equals 1 if the *i*th card a is queen and 0 otherwise. Are the X_i indicators independent?

```
OX = # of gneens drawn
```

Xi = E, card i = queen 4/52 Xi = E, otherwise A of \$, \$ of \$ really casy to find ~ P[Xi] = to $\chi = \chi_1 + \chi_2 + \chi_3$

 $E[X] = E[X_1] + E[X_2] + E[X_3] = \frac{3}{13}$

why indicators are cool: • don't need to be independent

· Bernonlli, so E[I] is

recap Hypergeometric Distribution

 $\binom{N}{n}$

All other conds

- like Binomial, measuring # of successes out of n trials
- BUT without replacement
- intuitively, getting one success reduces probability of next success. Cards :
- X = # of Q? when X~ Hypergeometric (N, B, n) drawing 3 cards
- Pick K QS out of LA choices 77 total V & pick vest 3 / ... "total # of trials n = 3 things " total possible N = 52 Success $\begin{pmatrix} B \\ F \end{pmatrix} \begin{pmatrix} N-B \\ N-k \end{pmatrix}$ 48

Queens

 $P[X=k] = \binom{B}{k}\binom{N-B}{N-k}$

 (\tilde{n})