recap Expectation
Important Facts

$$
E[X]=\sum_{a \in d} a \cdot P[X=a]
$$

How to use linearity of Expectation
(1) goal: find $E[x]$
(2) figure out now X can be split up into $X_{1}, X_{2} \ldots X_{n}$ st $X=X_{1}+x_{2}+\ldots \cdot x_{n}$
$-X_{i}$ should be indicator vars (Bernoulli)

- do not need to be molependent
- consider "subcases"
$\checkmark E[X+Y]=E[X]+E[y]$
$\checkmark E[c X]=c E[X]$ these are No
always true.
$\left.X E\left[\frac{1}{x}\right]=\frac{1}{E[x]}\right]$ always true.
"sums, differences, and constant multiples of RVs"
$\xrightarrow{ } \rightarrow$ then,
(3) find $E\left[X_{1}\right]$
(4) use linearity of expectation \because
recap Remember this problem?
3 How Many Queens?
You shuffle a standard 52 -card deck, before drawing the first three cards from the top of the pile.
Let X denote the number of queens you draw.
(a) What is $\mathbb{P}(X=0), \mathbb{P}(X=1), \mathbb{P}(X=2)$ and $\mathbb{P}(X=3)$?
(b) What do your answers you computed in part a add up to?
(c) Compute $\mathbb{E}(X)$ from the defmitionexpectation. linearity of ex pectation ${ }^{\text {TM }}$
(d) Let X_{i} be an indicator random variable that equals 1 if the i th card a is queen and 0 otherwise.

Are the X_{i} indicators independent?
why indicators are cool:
(c) $X=\#$ of queens drawn

- don't need to be independent

$$
X_{i}=\left\{\begin{array}{l}
1, \text { card } i=\text { queen } \\
0,5 z \\
0, \text { othemise } A \text { of } \psi, s \text { of } \nabla
\end{array}\right.
$$

- Bemonili, so E[I] is really cary to find ~

$$
P\left[X_{i}\right]=\frac{1}{13} \quad X=X_{1}+X_{2}+X_{3}
$$

$$
E[x]=E\left[x_{1}\right]+E\left[x_{2}\right]+E\left[x_{3}\right]=\frac{3}{13}
$$

recap Hypergeonetric Distribution
like Binomial, measuring \# of successes out of n trials BUT without replacement
intuitively, getting one success reduces probability of next success.
$X \sim$ Hyper geometric (N, B, n)

