recap Variance
how far the set of possible values is spread out from the expected value.
$\operatorname{Var}(x)=E\left[(x-\mu)^{2}\right]$ where $\mu=E[x]$
$\operatorname{Var}(x)=E\left[x^{2}\right]-E[x]^{2}$
if x, y, z independent... $\operatorname{Var}(x+y+z) \cdot \operatorname{Var}(x)+\operatorname{Var}(y)+\operatorname{Var}(z)$
always...

$$
\begin{aligned}
& \operatorname{Var}(c x)=c^{2} \operatorname{Var}(x) \\
& \operatorname{Var}(x+c)=\operatorname{Var}(X)
\end{aligned}
$$

Concentration \ln equalities
Markov's: (X is nonnegative)

$$
P(X \geqslant a) \leq \frac{\mathbb{E}[x]}{a}
$$

Che byshew's: $P(|x-\mu| \geq c) \leq \frac{\operatorname{Var}(x)}{c^{2}}$
WILD
if we observe an ont come severn times, the average of the observations converges very case to $E[x]$ $M=E[x] \quad$ follows from applying Morions on $y=(x-E[x])^{2}$

$$
\begin{gathered}
P\left(\left|\frac{x_{1}+\ldots+x_{n}}{n}-M\right| \geq \epsilon\right) \rightarrow 0 \\
\text { as } n \rightarrow \infty
\end{gathered}
$$

recap intuitive Markov＇s 券 \＆p
supple ne have a field of flowers，avg height $=4 \mathrm{ft}$
$P($ height of a flower $\geqslant 10 \mathrm{ft}) \leq \frac{4}{10}$ by Markov＇s
Assume this is not true．．．
Total height of n flowers $=4 n$
if more than $4 / 10$ of flowers had height $\geq 10 \mathrm{ft}$ ，
the total height of the tall flowers $>\frac{4}{10} \cdot n \cdot 10$
total height of this subpopulation already greater than total height of population．not possible if all heights nonnegative．
＊avg isn＇t the exact same as expected value，so only treat this exercise as a way to see the general intuition behind Markov＇s．
recap Using Chebyshen to Estimate Bias of a Coin true mean sample mean but how large should in be?
By ULN, p should be close to \hat{p} if n is large
say we want to estimate p with 95% confidence and tolerate error of 0.1 we ask... how many times should l toss $s t$. There is at least a 95% chance that our observed \hat{p} is within 0.1 of p.

$$
\begin{aligned}
& S_{n}=X_{1}+X_{2}+\ldots+X_{n} \quad X_{i}=\left\{\begin{array}{l}
1 \\
0 \text { if toss } i=H \\
0 \text { othemise }
\end{array}\right. \\
& E[\hat{p}]=\frac{1}{n}\left(E\left[X_{1}\right]+\ldots E\left[X_{n}\right]\right)=\frac{1}{n} \cdot n \cdot p=p
\end{aligned}
$$

Recall Chebysher's : $P[|x-u| \geq \alpha] \leq \frac{\operatorname{Var}(x)}{\alpha^{2}}$ set x to be \hat{p}.
recap

$$
S_{n}=X_{1}+x_{2}+\ldots+X_{n} \quad X_{i}=\left\{\begin{array}{l}
1 \\
1 \\
0
\end{array}\right.
$$

$$
\begin{aligned}
\operatorname{Var}(x+y) & = \\
\operatorname{Var}(x) & +\operatorname{Var}(y)
\end{aligned}
$$

$$
E[\hat{p}]=\frac{1}{n}\left(E\left[X_{1}\right]+\ldots E\left[X_{n}\right]\right)=\frac{1}{n} \cdot n \cdot p=p
$$ if indepenclent

Recall Chebyshev's : $P[|X-u| \geq \alpha] \leq \frac{\operatorname{Var}(X)}{\alpha^{2}}$ set X to be $\hat{p} . \operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
need $\operatorname{Var}(\hat{p})$
\hat{p} is a scaled sum of n indicator variables so $\operatorname{Var}(\hat{p})=\frac{1}{n^{2}} \operatorname{Var}\left(S_{n}\right)$
Plug into Cheloysluer's

$$
P[|\hat{p}-p| \geq 0.1] \leq \frac{p(1-p)}{n} \cdot \frac{1}{0.1^{2}} \quad=\frac{p(1-p)}{n} \quad \text { cool fact. } p(1-p) \leq 1 / 4
$$

probability that we DO so we usually deviate a lot. use $1 / 4$.

