recap Markov Chains

$$
\begin{aligned}
& \Pi_{0}=\left[\begin{array}{lll}
0.8 & 0.1 & 0.1
\end{array}\right] \\
& \Pi_{1}=\Pi_{0} P= \\
& {\left[\begin{array}{lll}
0.8 & 0.1 & 0.1
\end{array}\right]\left[\begin{array}{ccc}
0.5 & 0.3 & 0.2 \\
0 & 0.4 & 0.6 \\
1 & 0 & 0
\end{array}\right]} \\
& =\left[\begin{array}{lll}
0.5 & 0.28 & 0.22
\end{array}\right]
\end{aligned}
$$

state space $X=\{1,2, \ldots k\}$ eg. | $\{$ Piazza, | $F B$, |
| :---: | :---: |
| 1 | R_{3} |

transition
probability eg. $\left[\begin{array}{lll}0.5 & 0.3 & 0.2\end{array}\right] \begin{aligned} & \text { Rows will sum } \\ & \text { up to }\end{aligned}$ matrix

$$
P \rightarrow\left[\begin{array}{ccc}
1.3 & 0.6 \\
0 & 0.4 & 0.6 \\
1 & 0 & 0
\end{array}\right]
$$ up to 1 "we have to go some where"

probabilities $\pi_{i}(k)=P[$ were in state k at timestep i]

$$
P(i, j)=
$$

$$
P(\text { from }, \text { to })
$$

$$
\pi_{i}=\left[\begin{array}{llll}
\pi_{i}(1) & \pi_{i}(2) & \ldots & \pi_{i}(k)
\end{array}\right]
$$

$$
\pi_{i+1}=\pi_{i} P
$$

- sum of those elements should

$$
\pi_{n}=\pi_{0} p^{n}
$$ be 1 .

current $X_{i}=R V$ representing state $@$ time step i

$$
P\left[X_{i}=b \mid X_{i-1}=a\right]=P(a, b)
$$

recap more definitions wow invariant distribution $\quad \pi=\pi P$

- to solve for invariant, use $\pi=\pi P$ and $\sum_{i} \pi(i)=1$
- if Π_{0} is the invariant, then $\Pi_{n}=\Pi_{0}$ for all n

Markov property "future depends on only the present, not the part

$$
P[X_{n}=i_{n} \left\lvert\, \underbrace{\text { tracking every stare }^{\text {we've been in }} \begin{array}{l}
\text { since the beginning }
\end{array}}_{\left.\begin{array}{c}
\left.X_{n-1}=i_{n-1}, X_{n-2}=i_{n-2} \ldots\right]
\end{array}\right]} P[X_{n}=i_{n} \left\lvert\, \underbrace{\left.X_{n-1}\right]}_{\begin{array}{c}
X_{n-1} \\
\text { tracking just }
\end{array}}\right.\right.
$$

reducibility + periodicity - nest time!
recap Hitting Time / A Before B
want to consider all states
(1) find "fixed" probabilies for some states

- usually one will be our goal
- some might represent that "we will never yet to our goal"
(2) Express α (rest of the states) in terms of (1) for each state, think about where we can go next, and with what probability

Tip whether you add I in your equations or not depends on if advancing a step costs you someaning (time, coin flips, etc) like when yon'te calculating the expected number of something.

