recap
1 Markov Chain Terminology
In this question, we will walk you through terms related to Markov chains.

1. (Irreducibility) A Markov chain is irreducible if, starting from any state i, the chain can] ann we get to any stake from transition to any other state j, possibly in multiple steps.
2. (Periodicity) $d(i):=\operatorname{gcd}\left\{n>0 \mid P^{n}(i, i)=\mathbb{P}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}, i \in \mathscr{X}$. If $d(i)=1 \forall i \in \mathscr{X}$,] How long can we take to start
then the Markov chain is aperiodic; otherwise it is periodic.
3. (Matrix Representation) Define the transition probability matrix P by filling entry (i, j) with probability $P(i, j)$.
4. (Invariance) A distribution π is invariant for the transition probability matrix P if it satisfies the following balance equations: $\pi=\pi P$.

- every finite state Markov Chain has at least one invariant distribution
- if irreducible, invariant distribution is unique and end @ state i? (sort of)
$n=$ any possible \# of steps it can take to get from state i back to i.
aperiodic if $d(i)=1$ FOR ALL States
- if irreducible + aperiodic, we always converge to the invariant distribution (ie $\pi_{n} \approx \pi$ as $n \rightarrow \infty$)
- if periodic, initial distribution might not converge to invariant
- long term fraction of time spent in each state follows π if irreducible.
recap
1 Markov Chain Terminology
In this question, we will walk you through terms related to Markov chains.

1. (Irreducibility) A Markov chain is irreducible if, starting from any state i, the chain can transition to any other state j, possibly in multiple steps.
2. (Periodicity) $d(i):=\operatorname{gcd}\left\{n>0 \mid P^{n}(i, i)=\mathbb{P}\left[X_{n}=i \mid X_{0}=i\right]>0\right\}, i \in \mathscr{X}$. If $d(i)=1 \forall i \in \mathscr{X}$, then the Markov chain is aperiodic; otherwise it is periodic.
3. (Matrix Representation) Define the transition probability matrix P by filling entry (i, j) with probability $P(i, j)$.
4. (Invariance) A distribution π is invariant for the transition probability matrix P if it satisfies the following balance equations: $\pi=\pi P$.
irreducible $+d(i)$ of one node $=1$ $\Rightarrow d(i)$ of all nodes $=1 \Rightarrow$ aperiodic intuition (not proof) imagine if one node I has self loop. for any other node k, we can walk $k \rightarrow \ldots \rightarrow I \rightarrow \ldots \rightarrow k$ as well as

Periodic

$$
1 \rightarrow 2 \rightarrow 3 \rightarrow 1
$$

$d(i)$ is for a specific state i.
recap Hitting Time / Probability can kind of think of it like recursion Find n !

Recursion
(1) base case
$n!=1$ if $n \leq 1$
(2) recursive Step / leap of faith
$n!=n \cdot(n-1)!$ have this

Hitting Time

(1) base case when have 1 reached my goal, or made it impossible to reach?
(2) express in terms of expected value of future states.
CAUTION: hitting time is nit EXACTLY recursion, this is just to help understand. with recursion, wed have issues if you needed ob know n ! to find $(n-1)$! but here all we went to do is see up a Solvalole system of equations.

Find
expected \# of Steps to get from $A \rightarrow C$.
01
$\beta(c)=0$ already $\& c$, so \# Steps to $C=0$

$$
\beta(B)=1+\frac{2}{3} \beta(c)+\frac{1}{3} \beta(A)
$$

we aren't at after taking that step, were either at C or A. take at least 1 step to get to C.

