recap Continuous Probability
always consider
$P[X=x]=0$, consider $P(x \leq X \leq x+d x)$ instead over an interval.

Probability Density Function $f_{X}(x)$
relevant discrete comparison...

$$
\begin{array}{ll}
f_{X}(x) \geq 0 & P[X=x] \geq 0 \\
\int_{-\infty}^{\infty} f_{X}(x) d x=1 & \sum_{x} P[X=x]=1
\end{array}
$$

Cumulative Distribution Function $F_{x}(x)$

$$
F_{X}(x)=P[X \leq x]=\int_{-\infty}^{x} f_{x}(x) d x
$$

pdf is the derivative of the CDF.
recap Characterizing the Distribution (s)
Expectation

$$
E[x]=\int_{-\infty}^{\infty} x f_{x}(x) d x
$$

Discrete parallel.

Variance

$$
\operatorname{Var}(X)=\int_{-\infty}^{\infty} x^{2} f(x) d x-\left(\int_{-\infty}^{\infty} x f(x) d x\right)^{2} \operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}
$$

Joint Density Functions

$$
x, y \text { independent if }
$$

$$
\begin{array}{l:l}
f(x, y) \geq 0 \quad \forall x, y \in \mathbb{R} & P[a \leq X \leq b, c \leq y \leq d] \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1 & =\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \quad \forall x, y \in \mathbb{R} .
\end{array}
$$

get marginal distr. for X by integrating joint density wot. Y.

$$
\begin{aligned}
& \text { recap Example Distributions } \\
& \text { standard normal. } \mu=0 \\
& \sigma=1 \\
& \text { Uniform }(a, b) \text { Exponential }(\lambda) \\
& \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
& f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & a \leq x \leq b \\
0, & \text { else }
\end{array} \quad f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x}, & x \geq 0 \\
0, & \text { else }
\end{array}\right.\right. \\
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma}} \\
& F(x)=\left\{\begin{array}{cl}
0, & x<a \\
\frac{x-a}{b-a} & a \leq x \leq b \\
1 & x>b
\end{array}\right. \\
& E[x]=\frac{a+b}{2} \\
& E[X]=\frac{1}{\lambda} \\
& E[x]=\mu \\
& \operatorname{Var}(x)=\frac{(b-a)^{2}}{12} \\
& \operatorname{Var}(x)=\frac{1}{\lambda^{2}} \\
& \operatorname{Var}(x)=\sigma^{2}
\end{aligned}
$$

recap Steps For Solving Problems Involving 2 RVs up win this, just teamed ac s \boldsymbol{c} up with this, Mst reamed a the lass :
general tip consider how you would do it if it were a discrete problem, then think about what changes to make (ie sums \rightarrow integrals, $P[X=x] \rightarrow f_{x}(x) d x$, etc)
(1) plot your RVs on a 2D plane and shade the feasible region
(2) find the bounds of the feasible region, eg $\iint \square d \square$

- our domain of integration usually won't be too crazy, but do some practice on this
(3) find/ determine pols of your RVs
- sometimes CDF is easier to find, so get CDF and derive.
(4) if both are uniform, find area of region (like just $\frac{1}{2} b \cdot h$ kinda stuff) else, integrate over the joint density function.

